Materials: Jar (with lid), small plants, pebbles, activated charcoal, soil, water, trowels
Objective: Students will learn about the water cycle through watching it in a controlled environment (a terrarium) that will eventually allow them to observe the condensation, precipitation, and evaporation of moisture.
Building a Terrarium:
Step 1: Fill the bottom of a jar with several handfuls of small pebbles
Step 2: Cover the pebbles with a thin layer of activated charcoal (found at pet stores, used to prevent the build up of mold as water cycles through your terrarium)
Step 3: Add a deep layer of soil
Step 4: Transplant small plants into the soil. Chose moss and other plants that thrive in a moist environment
Step 5: Water
Step 6: Cover and watch
Washington State Content Areas Covered:
EARL 1: System
Big Idea: Systems
Core Content: Role of Each Part in a System
Students know that:
-A system is a group of interacting parts that form a whole. Give examples of simple living and physical systems (e.g., a whole animal or plant, a car, a doll, a table and chair set).
-A whole object, plant, or animal may not continue to function the same way if some of its parts are missing. Predict what may happen to an object, plant, or animal if one or more of its parts are removed (e.g., a tricycle cannot be ridden if its wheels are removed).*
-A whole object, plant, or animal can do things that none of its parts can do by themselves.
-Some objects need to have their parts connected in a certain way if they are to function as a whole.
-Similar parts may play different roles in different objects, plants, or animals.
Students are expected to:
-Explain how the parts of a system depend on one another for the system to function.
-Contrast the function of a whole object, plant, or animal with the function of one of its parts (e.g., an airplane can fly, but wings and propeller alone cannot; plants can grow, but stems and flowers alone cannot).
-Explain why the parts in a system need to be connected in a specific way for the system to function as a whole (e.g., batteries must be inserted correctly in a flashlight if it is to produce light). -Identify ways that similar parts can play different roles in different systems (e.g., birds may use their beaks to crack seeds while other birds use their beaks to catch fish).
EARL 1: System
Big Idea: Systems
Core Content: Role of Each Part in a System
Students know that:
-A system is a group of interacting parts that form a whole. Give examples of simple living and physical systems (e.g., a whole animal or plant, a car, a doll, a table and chair set).
-A whole object, plant, or animal may not continue to function the same way if some of its parts are missing. Predict what may happen to an object, plant, or animal if one or more of its parts are removed (e.g., a tricycle cannot be ridden if its wheels are removed).*
-A whole object, plant, or animal can do things that none of its parts can do by themselves.
-Some objects need to have their parts connected in a certain way if they are to function as a whole.
-Similar parts may play different roles in different objects, plants, or animals.
Students are expected to:
-Explain how the parts of a system depend on one another for the system to function.
-Contrast the function of a whole object, plant, or animal with the function of one of its parts (e.g., an airplane can fly, but wings and propeller alone cannot; plants can grow, but stems and flowers alone cannot).
-Explain why the parts in a system need to be connected in a specific way for the system to function as a whole (e.g., batteries must be inserted correctly in a flashlight if it is to produce light). -Identify ways that similar parts can play different roles in different systems (e.g., birds may use their beaks to crack seeds while other birds use their beaks to catch fish).
EALR 2: Inquiry
Big Idea: Inquiry
Core Content: Conducting Investigations
Students know that:
-2-3 INQA Question: Scientific investigations are designed to gain knowledge about the natural world.
-2-3 INQB Investigate: A scientific investigation may include making and following a plan to accurately observe and describe objects, events, and organisms; make and record measurements, and predict outcomes.
-2-3 INQD Investigate: Simple instruments, such as magnifiers, thermometers, and rulers provide more information than scientists can obtain using only their unaided senses.
Students are expected to:
• Explain how observations can lead to new knowledge and new questions about the natural world.
• Work with other students to make and follow a plan to carry out a scientific investigation. Actions may include accurately observing and describing objects, events, and organisms; measuring and recording data; and predicting outcomes.
Big Idea: Inquiry
Core Content: Conducting Investigations
Students know that:
-2-3 INQA Question: Scientific investigations are designed to gain knowledge about the natural world.
-2-3 INQB Investigate: A scientific investigation may include making and following a plan to accurately observe and describe objects, events, and organisms; make and record measurements, and predict outcomes.
-2-3 INQD Investigate: Simple instruments, such as magnifiers, thermometers, and rulers provide more information than scientists can obtain using only their unaided senses.
Students are expected to:
• Explain how observations can lead to new knowledge and new questions about the natural world.
• Work with other students to make and follow a plan to carry out a scientific investigation. Actions may include accurately observing and describing objects, events, and organisms; measuring and recording data; and predicting outcomes.
No comments:
Post a Comment